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This paper presents a novel numerical solution algorithm for the linear transient heat conduction equa-
tion using the ‘Explicit Green’s Approach’ (ExGA). The method uses the Green’s matrix that represents the
domain of the problem to be solved in terms of the physical properties and geometrical characteristic.
The Green’s matrix is the problem discrete Green’s function determined numerically by the Finite Ele-
ment Method (FEM). The ExGA allows explicit time marching with time step larger than the one required
by FEM, without losing precision. The ExGA numerical results are quite accurate when compared to ana-
lytical solutions and to numerical solutions obtained by the FEM.
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1. Introduction

Green’s functions are very powerful tools for obtaining
solutions to transient and steady-state linear heat conduction
problems. They can also be applied to find solution of some con-
vection problems and to model many other phenomena which
are described by the same type of equation, i.e., those that involve
solution of diffusion-type partial differential equations. A Green’s
function (GF) is a basic solution of a specific differential equation
with homogeneous boundary conditions; for transient heat con-
duction, a GF describes the temperature caused by an instanta-
neous, local energy pulse. In addition to originating efficient
numerical solution procedures, GF based methods also provide a
better understanding of the nature of diffusion processes for heat
conduction.

GFs have been used in the solution of equations of transient
heat conduction for many decades, a classic text on the subject is
the book by Carslaw and Jaeger [1], in which an introduction to
the use of GFs based methods for heat conduction problems is pre-
sented. In that study they obtained the GFs through Laplace trans-
forms. Other important reference concerning GFs is the book of
Özis�ik [2] where the use and advantages of GFs based methods
are described.

Morse and Feshbach [3], Butkovskiy [4], Greenberg [5], Roach
[6], and Stakgold [7] also presented works describing GFs use for
several applications. Beck [8] extended solutions presented by
ll rights reserved.
Özis�ik [2] by including the ‘m2T’ term, which enters the governing
equation in some heat problems. Approximate methods of finding
GFs were developed by Haji-Sheikh and Lakshminarayanan [9] and
Haji-Sheikh [10], who used the Galerkin-based integral method.
Later, Beck et al. [11] presented an extensive compilation concern-
ing GFs, containing a clear derivation of GF analytical solutions and
a systematic and practical approach to the solution of diffusion-
type problems. They derived 25 different GFs and analyzed in de-
tail their multiplicative properties. Cole and McGahan [12] used a
GF based approach to calculate the temperature of a multilayer
medium heated by laser radiation. Feng and Michaelides [13] pre-
sented modified Green’s functions (MGFs) to model heat transfer in
a homogeneous or a composite solid body. Kuo and Chen [14],
motivated by studies of Norris [15] and Martin et al. [16], elabo-
rated further along this line of research, but focused on a simpler
mathematical framework, the conduction phenomena, aiming at
finding exact, closed-form expressions for Green’s functions.
Sutradhar et al. [17] worked with GFs for 3D transient heat conduc-
tion and graded materials, employing a Laplace transform bound-
ary element method (LTBEM) approach, where the numerical
implementation was performed using a Galerkin approximation.
Gray et al. [18] worked with Green’s functions and boundary inte-
gral analysis for exponentially graded materials in heat conduction.

Using GFs in heat conduction problems has several advantages.
First, it is a powerful and flexible method, since the derived GFs for
a given geometry may be used in conjunction with a variety of ini-
tial and boundary conditions; second, a systematic procedure is
available for obtaining GFs, i.e., once these functions are obtained
and tabulated, they may be used without any effort spent on the
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Nomenclature

[C] Capacitance matrix
{F} Thermal flux vector
[G] Green’s matrix
g Heat source
[I] Identity matrix
[K] Thermal conductance matrix
k Thermal conductivity
q Heat flux
{T} Vector of equivalent nodal temperature
T Temperature

T0 Temperature prescribed at t = 0
f _Tg {@T/@t}
t, s Time
x Horizontal Cartesian coordinate

Greek symbols
a Thermal diffusivity
C Boundary of the domain
X Domain of the problem
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details of their derivation; third, 1-D GFs may be used as building
blocks to obtain 2- and 3-D solutions to suitable problems. The
specifics of the multiplication process to obtain 2- and 3-D
solutions are presented by Özis�ik [2]. A treatise by Greenberg [5]
exposes the usefulness of the GF method.

Finding Green’s functions corresponding to certain physical
phenomena, possibly incorporated with suitably prescribed
boundary data, is one of the fundamental subjects in mathematical
physics. The knowledge of Green’s functions can serve as a basic
ingredient to construct the fields via superposition under distrib-
uted sources and general boundary data. The literature exhibits
analytical expressions for GFs of a great variety of physical
phenomena including wave propagation [19], anisotropic piezo-
electricity, thermoelasticity, poroelasticity [15] among others;
however, the majority of the existing fundamental solutions is
under the condition that the material be homogeneous.

The field equations for graded media are in general governed by
partial differential equations with position-dependent coefficients,
and thus finding explicit solutions for this media GFs is quite com-
plicated. Typical solutions of GFs for this case are often expressed
as series or integral forms in a transformed space, which com-
monly limit their applications. For some aspects of applications,
it is often desirable to have closed-form expressions for Green’s
functions, such as in effective medium theories and in boundary
integral methods; however, in graded media this is not always pos-
sible. Success can be achieved for some cases, as illustrated in the
recent study by Martin et al. [16] who derived the Green’s function
for a three-dimensional exponentially graded elastic solid, in
which the Lamé constants vary exponentially in a certain direction,
and in Sutradhar et al. [17] and Gray et al. [18], mentioned above.

The framework proposed in this article includes numerical solu-
tion for the linear transient heat conduction equation using the
‘Explicit Green’s Approach’ (ExGA). This method allows the pro-
gress over time using the Green’s matrix (GM), which represents
the domain of the problem to be solved in terms of the physical
and geometrical properties. The GM can be found without the
knowledge of the analytical expression of the problem Green’s
function, which is, in many cases, difficult or even impossible of
being worked out. However, in this paper, this matrix is deter-
mined numerically by the FEM, but it can also be found by other
numerical methods such as: finite differences (FDM), finite vol-
umes (FVM), etc.

The ExGA leads to an explicit time marching procedure with no
time step restriction. More specifically, when sub-steps are used to
calculate GMs, one can easily have, for instance, time steps 100
times larger (in fact there is no limit) than those of a typical FEM
approach. Notice that the GM is just determined for the first inter-
val of time, allowing its use for the next time steps. Moreover, the
GM could be reused for other problems that have the same domain
and physical characteristics.
Problems analyzed here with different initial and boundary
conditions (Dirichlet and Neumann) show that the ExGA has a
good performance when compared to analytical solutions found
in the literature and to numerical solutions obtained by the FEM.

In the next section, a review and the mathematical background
of the ExGA method using the FEM and the Laplace transform is
presented. In Section 3, a numerical procedure to determine the
GM is outlined. In Section 4, four examples are discussed. Finally,
in the last section, some conclusions about this work are presented.

2. The Explicit Green’s Approach (ExGA)

2.1. Review

With the objective of analyzing engineering problems effi-
ciently, time-domain analysis plays a crucial role in scientific
computations. There is a pressing need to develop effective compu-
tational algorithms and tools, especially for large-scale transient
linear and nonlinear problems. At present, the so called direct time
integration methods (DTIM), based either on physical or modal
coordinates, are widely employed for a variety of engineering
applications. Algorithms based on physical coordinates are quite
popular in many commercial codes because of their various inher-
ent advantages. However, for certain applications, modal coordi-
nates continue to be the choice of some analysts, especially for
linear systems, long time responses and repeated analyses. The
basic factors worthy of consideration for computational algorithms
for time-dependent problems are: the need for good accuracy
while preserving the underlying physics, low CPU time and storage
requirements, and easy implementation.

Analytical approaches, although strongly recommended to be
pursued, are not feasible for some linear/nonlinear situations, espe-
cially, for complex geometries and large scale engineering computa-
tions. After the spatial discretization of transient field problems,
there are many numerical approximation methods developed from
various viewpoints that have been introduced for the time integra-
tion and solution of this class of problem. These include finite differ-
ence approximations for the time derivatives, which lead to the
referred direct time integration one-step and multi-step methods
(Belytschko and Hughes [21]) and formulations via a weighted
residual approach, which have indeed provided certain useful gen-
eralizations to a limited extent (Wood [22]).

Employing finite elements as the principal analysis tool, the tra-
ditional practices and approaches for transient field problems first
involve the semi-discretization of the partial differential equations
to yield a set of ordinary differential equations in time. Finite dif-
ference approximations are then most customarily employed for
the time derivative terms to obtain the necessary recursive
time-stepping algorithmic relations. These algorithms are gener-
ally categorized as explicit and implicit.
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Several different techniques of numerical analysis of transient
nonlinear/linear thermal problems exist. Finite difference (FDM),
finite element (FEM), finite volume (FVM), boundary element
(BEM) methods are the most used techniques approaches for the
spatial discretization. Within the context of the so-called semi-dis-
cretization process, which leads to a system of first-order ordinary
differential equations in time, numerous time discretization ap-
proaches exist, which can be employed for evaluating the transient
thermal response. Among these methods, the most common direct
time integration algorithms are those belonging to the trapezoidal
a-family (Hughes [23]). Whereas explicit solution techniques such
as forward Euler (a = 0) offer simplicity and are relatively easy to
codify, they are only first-order time accurate and conditionally
stable, thus imposing a severe time-step restriction. On the other
hand, implicit solution techniques such as the Crank–Nicolson
method (a = 0.5) are unconditionally stable and do not impose
such severe restrictions; this is the only method of the trapezoidal
family that is second-order time accurate.

The literature contains many classical approaches for time
marching; for a complete review see Tamma et al. [24]. Explicit
procedures are preferable in a large class of problems because they
are computationally cheaper and faster (Baumeister and Kreider
[25], Su and Tabarrok [26]). Besides the works previously men-
tioned, Hulbert [27] presented a second-order accurate explicit
subcycling algorithm, and Mohtar and Segerlind [28] utilized a dy-
namic time-step with forward, central and backward differences
and Galerkin schemes. On the other hand, implicit schemes have
been developed in order to seek high-order accurate approaches
(Zhang [29] and Karaa [30]).

Mansur et al. [31] presented a family of algorithms to time inte-
grate hyperbolic partial differential equations based on numerical
GM; the approach presented was denominated ExGA. These
authors presented a discussion where they associate the ExGA ap-
proach with the classical time-domain boundary integral equation
(Mansur [19]) method. It is worth mentioning that the term ‘expli-
cit’ is employed in the sense that Green’s functions are explicitly
computed.

Wrobel [32] worked out step-by-step Green’s functions based
algorithms using analytical fundamental solutions of homoge-
neous media. Soares and Mansur [33] developed a formulation to
compute Green’s functions implicitly by the Newmark time march-
ing scheme. Zhong and Williams [34] derived a new family of
unconditionally explicit or implicit algorithms based on analytical
solution of first-order ordinary differential equations in which the
concept of Green’s functions is also implicitly presented.

Fung [35] dealt with numerical determination of Green’s func-
tions by alternative formulations applied to MDOF spring-mass
systems. Loureiro [36] and Dors [37] presented the general ap-
proach and defined in which class of problems the new approaches
are recommended instead of the classical ones.

As Mansur et al. [31], Loureiro [36] and Dors [37] did for the
scalar wave equation, the time-domain boundary integral equation
presented by Mansur [19] and Wrobel [32] can be used to explain
concepts of the developments presented here for the heat conduc-
tion concerning the ExGA. In the formulation discussed in the pres-
ent paper, the major limitation of BEM approaches is removed, i.e.,
it is not necessary to have an analytical expression for the Green’s
function of a problem; rather, it is computed numerically. Any
standard numerical method can be employed to compute the
Green’s function of the problem, thus there is no limitation at all.
For example, the medium can be nonhomogeneous, anisotropic,
visco-elastic, poroelastic, etc. The price to pay for the aforemen-
tioned generality is the discretization of the domain; however, sub-
stantial accuracy and stability improvement are achieved. In fact, if
sub-steps are employed, one is free to choose the maximum time-
step for which explicit Green’s function based algorithms are stable
and accurate. As mentioned above one can easily employ time
steps thousands of times larger than those permitted by the central
difference or Runge–Kutta methods. The only restriction on the
time-step length is now concerned with having a good picture of
the time response history.

2.2. The ExGA method

The present section describes the Explicit Green’s Approach for
integrating the heat conduction equation. The algorithm is based
on the calculation of the Green’s function in nodal coordinates by
the finite element method.

The spatial discretization, using the finite element method
(FEM), of the parabolic non-homogeneous heat conduction equa-
tion can be represented in matrix form as (Hughes [23]):

½C�f _TðtÞg þ ½K�fTðtÞg ¼ fFðtÞg ð1Þ

with the initial condition,

fTð0Þg ¼ fTg0 ð2Þ

where [C] is the capacitance matrix, [K] is the thermal conductance
matrix, and {F} is a vector of equivalent nodal heat loads. These
matrices and the vector above are calculated by the following
expressions:

Cij ¼
Xn

e¼1

k
a

ZZ
Xe

NiNjdX ð3Þ
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Xn

e¼1
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Xe

@Ni
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þ @Ni
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@Nj
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dX ð4Þ
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�qNidC�
Xnf
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ZZ
Xe

gNidX ð5Þ

where i, j = 1, . . . ,nn (number of nodes), Ni and Nj are the shape func-
tions, n is the number of elements in the domain, nc is the number
of elements with face(s) on the boundary which have prescribed
heat flux, and nf is the number of elements of the region where a
source is being applied. Quadrilateral finite elements have been
used in this work.

Applying the Laplace transform L to Eq. (1) gives (see Boyce
and DiPrima [38]):

Lð½K�fTðtÞg þ ½C�f _TðtÞgÞ ¼LðfFðtÞgÞ ð6Þ

Using properties of the Laplace transform, one has:

½K�LðfTðtÞgÞ þ ½C�Lðf _TðtÞgÞ ¼LðfFðtÞgÞ ð7Þ
½K�LðfTðtÞgÞ þ ½C�½sLðfTðtÞgÞ � fTð0Þg� ¼LðfFðtÞgÞ ð8Þ
ð½K� þ s½C�ÞLðfTðtÞgÞ ¼ ½C�fTð0Þg þLðfFðtÞgÞ ð9Þ

Therefore, the temperature vector in the Laplace domain can be
written as:

LðfTðtÞgÞ ¼ HðsÞð½C�fTð0Þg þLðfFðtÞgÞÞ ð10Þ

where

½HðsÞ� ¼ ð½K� þ s½C�Þ�1 ð11Þ

represents a transfer function. Finally, applying the Laplace inverse
transform to Eq. (10) and considering Eq. (11), one can obtain the
expression that represents the temperature vector in the time
domain, as follows:

fTðtÞg ¼L�1ð½HðsÞ�Þ½C�fTð0Þg þL�1ðHðsÞfFðsÞgÞ ð12Þ

Observe that if [H(s)] is the transfer function in the Laplace domain,
then its inverse transform is the transfer function in the time
domain, which is the time domain Green’s function in matrix form.
Thus,
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½GðtÞ� ¼L�1ð½HðsÞ�Þ ð13Þ

Therefore, the final expression of the vector temperature in terms of
the Green’s matrix is:

fTðtÞg ¼ ½GðtÞ�½C�fTð0Þg þ
Z t

0
½Gðt � sÞ�fFðsÞgds ð14Þ
10

1 x

y

8

1

Fig. 1. Geometry and mesh of examples 1 and 4.
3. Numerical procedure

3.1. Green’s matrix

Green’s function (GF) is usually called impulsive response of the
system, as it is explained in Özis�ik [2, chapter 6]. It can be obtained
numerically from Eq. (1), considering homogeneous boundary con-
ditions and an impulsive heat source applied at a source point,
which coincides with a node of the space mesh. Then, the Green’s
matrix can be obtained by the solution of the following system of
ordinary differential equations in the time:

½C�½ _GðtÞ� þ ½K�½GðtÞ� ¼ ½I�dðtÞ ð15Þ

with the initial condition,

½Gð0Þ� ¼ 0 ð16Þ

where [I] represents the identity matrix and d(t) is the Dirac delta
function.

The problem described by Eq. (15) is equivalent to the homoge-
neous initial value problem with application of a certain initial
condition (see Özis�ik [20]). In the present work, it was verified that
the correct equivalence is given by the problem presented below:

½C�½GðtÞ� þ ½K�½GðtÞ� ¼ 0 ð17Þ

with the initial condition,

½Gð0Þ� ¼ ½C��1 ð18Þ

Here the Green’s matrix is computed implicitly through the range
[0,Dt] with the Crank–Nicolson scheme. It is worth to point out that
the new method becomes more stable and accurate when a sub-
step procedure is adopted to obtain the Green’s matrix. If the capac-
itance matrix is lumped (diagonal), computing its inverse is fairly
cheap.

3.2. Convolution integral

In this section, it is presented a scheme to perform the numer-
ical calculus of the convolution integral given by the second term
on right-hand side of Eq. (14). Assuming that the time step is Dt
the temperature solution vector at any time can be evaluated
recursively as:

fTgtþDt ¼ ½G�Dt ½C�fTgt þ
Z tþDt

t
½Gðt þ Dt � sÞ�fFðt þ sÞgds ð19Þ

The second term on the right-hand side of Eq. (19) can be rewritten
as:Z Dt

0
GðDt � sÞFðsÞds ð20Þ

The functions {F(s)} and s(n) are here interpolated in the interval
[0,Dt] as indicated below,

FðsðnÞÞ ¼ FiN1ðnÞ þ Fiþ1N2ðnÞ and n 2 ½�1;1� ð21Þ
sðnÞ ¼ tiN1ðnÞ þ tiþ1N2ðnÞ and n 2 ½�1;1� ð22Þ

where N1 and N2 are linear interpolation functions given by:
N1ðnÞ ¼
1
2
ð1� nÞ and N2ðnÞ ¼

1
2
ð1þ nÞ ð23Þ

After mathematical manipulations, one can write (ti+1 � s) as a
function of N1 and Dt, and ds as a function of dn and Dt as indicated
below:

tiþ1 � s ¼ DtN1ðnÞ ð24Þ

ds ¼ Dt
2

dn ð25Þ

Applying the expressions Eqs. (21), (24) and (25) in Eq. (20), one ob-
tains the final expression, which is ready for computational
implementation:Z tiþ1

ti

Gðtiþ1 � sÞFðsÞds ¼Dt
2

Z 1

�1
GðDtN1ðnÞÞN1ðnÞdn

� �
Fi

�

þ
Z 1

�1
GðDtN1ðnÞÞN2ðnÞdn

� �
Fiþ1

�
ð26Þ

In the present work the integrals of Eq. (26) are calculated by
Newton–Cotes approximations with interpolation polynomials of
order one (trapezoidal rule).

4. Examples

In this section, four examples are presented to illustrate the
methodology employed in this work. The objectives of the exam-
ples are: (i) to solve a problem of heat conduction, without sources
and with null flux at the boundary, so that the answer for the tem-
perature field is given just by the first part of the right-hand side of
Eq. (19), that is, eliminating the contribution of the convolution
integral; (ii) to simulate one-dimensional situations to test the
Dirichlet and Neumann boundary conditions; and (iii) to analyze
the two-dimensional situation with a thermal shock on the bound-
ary, so that the answer for the temperature field is given by the
complete Eq.(19).

A thin rectangular plate of sides a = 10.0 m and b = 8.0 m was
considered for examples 1 and 4. Examples 2 and 3, that represent
the one-dimensional problem, considered the side b = 1.0 m to re-
duce computer run time. The adopted physical coefficients were
a = 1.0 m2/s, k = 1.0 W/�C m. The Green’s matrix was determined
for FEM using square elements (see Figs. 1 and 2) for the spatial
discretization and the finite difference method with the
Crank–Nicolson scheme for time integration. The ExGA method
was compared to the FEM with the same spatial discretization
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Fig. 2. Geometry and mesh of examples 2 and 3.

Table 1
Number of elements and sub-steps, element side length and central point initial
temperature for example 1

Elements Sub-steps Element side length (m) T(5,4,0) (�C)

80 10 1 1
320 20 0.5 4
1280 100 0.25 16

Fig. 4. Temperature at the central point (5,4) of the domain of example 1.
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and with the same implicit scheme in the time discretization used
in the calculus of the Green’s matrix.

4.1. Example 1

This example considers a rectangular domain with zero thermal
flux on all sides (see Fig. 3), with initial condition T(x,y,0) = d(x,yj5,4),
were (5,4) is the central point of domain. The Green’s matrix was cal-
culated using a time step D t = 0.1 s and the meshes and sub-steps
division shown in Table 1; the coarsest mesh of 80 elements is that
shown in Fig. 1.

The analytical Green’s function for this two-dimensional prob-
lem is given by Beck et al. [11, p. 503] . The solution, true for small
values of a(t � s)/a2 and a(t � s)/b2 (both 60.022), is given by:

Gðx; y; tjx0; y0; sÞ ¼ 1
4paðt � sÞ

X9

i¼1

exp � r2
i

4aðt � sÞ

� �( )
ð27Þ

where

r2
1 ¼ ðx� x0Þ2 þ ðy� y0Þ2

r2
2 ¼ ðx� x0Þ2 þ ðyþ y0Þ2

r2
3 ¼ ðx� x0Þ2 þ ð2b� y� y0Þ2

r2
4 ¼ ðxþ x0Þ2 þ ðy� y0Þ2

r2
5 ¼ ðxþ x0Þ2 þ ðyþ y0Þ2

r2
6 ¼ ðxþ x0Þ2 þ ð2b� y� y0Þ2

r2
7 ¼ ð2a� x� x0Þ2 þ ðy� y0Þ2

r2
8 ¼ ð2a� x� x0Þ2 þ ðyþ y0Þ2

r2
9 ¼ ð2a� x� x0Þ2 þ ð2b� y� y0Þ2

ð28Þ

The graphic of Fig. 4 displays ExGA method results when the mesh
is refined, maintaining the time step constant and increasing the
number of sub-steps. These results are the same found by FEM
when the time step used is equal to that utilized by ExGA divided
by the number of sub-steps (ss), i.e., (Dt)FEM = (Dt)ExGA/ss. It is
important to observe that the differences between the graphs of
Fig. 4 and the analytical solution are not related to convergence,
0

x

q=0

a

b

Fig. 3. Geometry and boundary conditions of example 1.
rather, it is because analytical Green’s functions consider punctual
loads whereas numerical ones consider a distribution over the mesh
in the neighborhood of the source node. Thus, as demonstrated in
Fig. 4, the more refined the mesh is the closer analytical and numer-
ical solutions are. Also, it can be seen that as expected, when t tends
to zero the analytical solution at the source point tends to infinite.

4.2. Example 2

The initial condition is T(x,y,0) = 0.0 �C throughout the domain.
The boundary conditions are zero thermal flux on the two horizon-
tal sides of the rectangular region with T(0,y,t) = 0.0 �C on the left
vertical side and T(a,y,t) = 1.0 �C on the right vertical side (see
Fig. 5). The time history of the temperature at the central point
illustrated by the graph of Fig. 6, demonstrates the accuracy of
the ExGA method when compared to the analytical solution and
to the numerical solution by FEM. The time step used for the ExGA
method was Dt = 10.0 s with 20 sub-steps to calculate the Green’s
0

x

q=0

T=1

T=0

a

b

Fig. 5. Geometry and boundary conditions of example 2.
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matrix, while Dt = 0.5 s was adopted for the FEM. The analytical
solution presented by Carslaw and Jaeger [1, p. 100] , with the last
term equal zero because the initial condition (T0) is equal zero,
reads:

Tðx; tÞ ¼ T1 þ ðT2 � T1Þ
x
L
þ 2

p
X1
n¼1

T2 cosðnpÞ � T1

n

� sin
npx

L

� 	
exp

�an2p2t

L2

� �
ð29Þ

where T1 and T2 are the boundary conditions, and L is the length of
the domain in the flux direction, which in this example is in the x
direction.

4.3. Example 3

As it was considered in example 2, the initial condition is
T(x,y,0) = 0.0 �C throughout the domain. The boundary conditions
are: q(x,0,t) = q(x,b,t) = 0.0 W/m, T(0,y,t) = 0.0 �C and q(a,y,t) = 0.1 W/m
(see Fig. 7). The time step used in the ExGA method was Dt = 50.0 s
with 10 sub-steps to calculate the Green’s matrix while Dt = 5.0 s
was the time step for the FEM.

Time history of the temperature at the central point obtained
with the ExGA method and the FEM are illustrated by the graph
of Fig. 8. The one-dimensional analytical results for the tempera-
ture field indicated in Fig. 8 can be found in Carslaw and Jaeger
[1, p. 113], and are given by:

Tðx; tÞ ¼ q0x
k
� 8q0L

kp2

X1
n¼0

ð�1Þn

ð2nþ 1Þ2

� exp
�að2nþ 1Þ2p2t

4L2
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2L

� �
ð30Þ
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Fig. 7. Geometry and boundary conditions of example 3.
where q0 is the Neumann boundary condition, and L is the length of
the domain in the flux direction, which in this example is parallel to
the x-axis.

4.4. Example 4

The initial condition is T(x,y,0) = 0.0 �C throughout the domain.
The boundary conditions are unitary temperature T1 on all sides of
the region as shown in Fig. 9. The time step used by the ExGA
method was Dt = 5.0 s with 10 sub-steps to calculate the Green’s
matrix, while Dt = 0.5 s was used by the FEM. Simulations with
ExGA method and FEM were also performed and compared to
the analytical solution presented by Carslaw and Jaeger [1, p.
185], adapted to 2-D, as given by:

Tðx;y;tÞ¼ T1�
16T1
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The numerical and the analytical solution results at the central
point are depicted by graphs indicated in Fig. 10.
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Fig. 9. Geometry and boundary conditions of example 4.
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4.5. Discussion of results

The result of example 1 displays the expected behavior of a
robust numerical method. The Green’s function representation is
good for regions not too close to the source point or else for time
not too close to the initial time when the impulse is delivered. Cor-
rect representation of singularities by FEM, FDM, FVM and ExGA
requires the development of special algorithms which is out of
the scope of the present work. When the mesh was refined, the re-
gion over which the initial condition is applied became smaller,
thus the numerical Green’s function became closer to the analytical
one. In addition, mesh refinement leads to a more accurate numer-
ical result for the Green’s matrix, and consequently for the temper-
ature field. The examples 2 and 3 illustrate a one-dimensional heat
conduction situation through typical problems of the literature for
first and second kind boundary conditions. The example 4 simu-
lates a two-dimensional heat conduction case, by means of a ther-
mal shock on the boundary. In all the studied cases, the ExGA
method provided accurate results and converged to the correct an-
swer with refinements that do not demand great computational
efforts.

5. Conclusions

This work presented a new approach for the solution of linear
transient heat conduction problems. An important contribution
of this article is the demonstration of the inverse capacitance
matrix as the equivalent initial condition to the unitary pulse given
by the Dirac delta function. If this was not possible, less accurate
numerical Green’s function would be obtained, and the ExGA
method would not be competitive with the classic ones.

In the ExGA method, the temperature field is calculated explic-
itly on time through the Green’s matrix (GM) which is determined
by FEM using an implicit algorithm. The use of this implicit algo-
rithm with sub-steps to compute the GM increases the computa-
tional cost; however, this apparent disadvantage becomes a
positive aspect since the unconditional stability property inherent
to implicit methods, such as the Crank–Nicolson scheme, is trans-
mitted through the GM to the ExGA method.

Thus, with sub-steps not too small, one obtains an explicit algo-
rithm which for any practical purpose can be considered uncondi-
tionally stable. In the examples 2, 3 and 4, a time step 20 times
bigger than that of the FEM was considered. In fact using sub-steps
allow the time-step ‘length’ to be as large as one wishes; the only
limitation being a good representation of the time response pic-
ture. The accuracy of the ExGA algorithm which is quite good can
be improved by considering higher-order polynomials to interpo-
late fluxes and in the Newton–Cotes algorithm.

The ExGA algorithm can be very suitable to multiple cases
where only the load conditions (boundary or source) change while
domain and physical properties remain unchanged, as in this case
is possible to use the same Green’s matrix for all analyses.

Finally, it is important to note that the method is new, thus,
there are quite a large number of applications yet to be carried out.
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